Bab I
Sejarah komputer
1.0.0 Pengertian Komputer
Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
Dalam definisi seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti "komputer" adalah "yang memproses informasi" atau "sistem pengolah informasi."
Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah komputer.
1.1.0 Generasi komputer
1.1.1 Generasi Pertama
Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploit potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer, Z3, untuk mendesain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode-rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu mempengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, colossus bukan merupakan komputer serbaguna (general-purpose computer), ia hanya didesain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa kini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania . Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW.
Komputer ini dirancang oleh John Presper Eckert (1919-1995) dn John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.
Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usha membangun konsep desin komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Computer(EDVAC) pada tahun 1945 dengan sebuh memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur von Neumann tersebut.
Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode-biner yang berbeda yang disebut “bahasa mesin” (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dn silinder magnetik untuk penyimpanan data.
1.1.2 Generasi Kedua
Pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis.
Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputerkomputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program.
Salah satu contoh penting komputer pada masa ini adalah IBM 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memproses informasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karir baru bermunculan (programmer, analyst, dan ahli sistem komputer). Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.
1.1.3 Generasi Ketiga
Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Pada ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponenkomponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.
1.1.4 Generasi Keempat
Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponenkomponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.
Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap perangkat rumah tangga seperti microwave oven, televisi, dn mobil dengan electronic fuel injection dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.
Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.
Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputerkomputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Komputer jaringan memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.
1.1.5 Generasi Kelima
Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001:Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertia manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang desain komputer dan teknologi semkain memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil.
Bab II
Konversi Bilangan
2.0.0 pengertian
Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.
Table 2.0.0: konversi bilangan
Biner | Oktal | Desimal | Hexadesimal |
0000 | 0 | 0 | 0 |
0001 | 1 | 1 | 1 |
0010 | 2 | 2 | 2 |
0011 | 3 | 3 | 3 |
0100 | 4 | 4 | 4 |
0101 | 5 | 5 | 5 |
0110 | 6 | 6 | 6 |
0111 | 7 | 7 | 7 |
1000 | 10 | 8 | 8 |
1001 | 11 | 9 | 9 |
1010 | 12 | 10 | A |
1011 | 13 | 11 | B |
1100 | 14 | 12 | C |
1101 | 15 | 13 | D |
1110 | 16 | 14 | E |
1111 | 17 | 15 | F |
2.1.0 Macam macam konversi antar bilngan
2.1.1 Konversi Antar Basis Bilangan
Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah:
1. Mengalikan bilangan dengan angka basis bilangannya.
2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.
2.1.2 Konversi Desimal ke Biner
Konversi dari bilangan desimal ke biner, dengan cara pembagian, dan hasil dari pembagian itulah yang menjadi nilai akhirnya.
Contoh: 10 (10) = ...... (2)
Solusi:
10 dibagi 2 = 5, sisa = 0.
5 dibagi 2 = 2, sisa = 1.
2 dibagi 2 = 1, sisa = 0.
Cara membacanya dimulai dari hasil akhir, menuju ke atas, 1010.
2.1.3 Konversi Biner ke Oktal
Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah:
1010 (2) = ...... (8)
Solusi:
Ambil tiga digit terbelakang dahulu.
010(2) = 2(8)
Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.
2.1.4 Konversi Biner ke Hexadesimal
Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya.
Contoh:
11100011(2) = ...... (16)
Solusi:
kelompok bit paling kanan: 0011 = 3
kelompok bit berikutnya: 1110 = E
Hasil konversinya adalah: E3(16)
2.1.5 Konversi Biner ke Desimal
Cara atau metode ini sedikit berbeda.
Contoh: 10110(2) = ......(10)
diuraikan menjadi:
(1x24)+(0x23)+(1x22)+(1x21)+(0x20) = 16 + 0 + 4 + 2 + 0 = 22
Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.
2.1.6 Konversi Oktal ke Biner
Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja.
Contoh:
523(8) = ...... (2)
Solusi:
Dengan melihat tabel utama, didapat hasilnya adalah:
3 = 011
2 = 010
5 = 101
Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan.
Hasil: 101010011(2)
2.1.7 Konversi Hexadesimal ke Biner
Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak empat bit. Seperti pada tabel utama.
Contoh:
2A(16) = ......(2)
Solusi:
A = 1010
2 = 0010
Hasil: 101010(2). Dengan catatan, angka "0" paling depan tidak usah ditulis.
2.1.8 Konversi Desimal ke Hexadesimal
Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal.
Contoh:
75(10) = ......(16)
Solusi:
75 dibagi 16 = 4 sisa 11 (11 = B).
Dan hasil konversinya: 4B(16)
2.1.9 Konversi Hexadesimal ke Desimal
Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16.
Contoh:
4B(16) = ......(10)
Solusi:
Dengan patokan pada tabel utama, B dapat ditulis dengan nilai "11".
(4x161)+(11x160) = 64 + 11 = 75(10)
2.1.10 Konversi Desimal ke Oktal
Caranya hampir sama dengan konversi desimal ke hexadesimal.
Contoh:
25(10) = ......(8)
Solusi:
25 dibagi 8 = 3 sisa 1.
Hasilnya dapat ditulis: 31(8)
2.1.11 Konversi Oktal ke Desimal
Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini:
31(8) = ......(10)
Solusi:
(3x81)+(1x80) = 24 + 1 = 25(10)
Bab III
I/O Device
3.0.0 Pengertian
Unit Input/Output (I/O) adalah bagian dari sistem mikroprosesor yang digunakan oleh mikroprosesor itu untuk berhubungan dengan dunia luar.
Unit input adalah unit luar yang digunakan untuk memasukkan data dari luar ke dalam mikroprosesor ini, contohnya data yang berasal dari keyboard atau mouse. Sementara unit output biasanya digunakan untuk menampilkan data, atau dengan kata lain untuk menangkap data yang dikirimkan oleh mikroprosesor, contohnya data yang akan ditampilkan pada layar monitor atau printer.
Bagian input (masukan) dan juga keluaran (output) ini juga memerlukan sinyal kontrol, antara lain untuk baca I/O (Input/Ouput Read [IOR]) dan untuk tulis I/O (Input/Output Write [IOW]).
Port I/O yang berarti gerbang konektor Input/Output pada komputer, seperti pada keyboard, mouse paralel/serial ataupun USB. Menyediakan koneksi untuk piranti eksternal seperti kamera digital, printer dan scanner.
3.1.0 Jenis - jenis I/O Device
3.1.1 Keyboard
Papan ketik (bahasa Inggris: keyboard) atau kibor adalah peranti untuk mengetik atau memasukkan huruf, angka, atau simbol tertentu ke perangkat lunak atau sistem operasi yang dijalankan oleh komputer.
Papan ketik terdiri atas tombol-tombol berbentuk kotak dengan huruf, angka, atau simbol yang tercetak di atasnya. Dalam beberapa sistem operasi, apabila dua tombol ditekan secara bersamaan, maka akan memunculkan fungsi khusus atau pintasan yang telah diatur sebelumnya.
Ada berbagai jenis tata letak tombol pada papan ketik. Akan tetapi, yang paling populer dan umum digunakan adalah tata letak QWERTY, meniru sistem tata letak mesin ketik.
Papan ketik tipe baru biasanya mempunyai tombol tambahan di atas tombol fungsi (F1, F2, dst.) untuk mempermudah pengguna dalam mengoperasikan komputer. Selain itu, papan ketik baru juga sudah banyak yang mendukung teknologi nirkabel.
3.1.2 Mouse
Mouse adalah alat yang digunakan untuk memasukkan data ke dalam komputer selain papan ketik. Tetikus memperoleh nama demikian karena kabel yang menjulur berbentuk seperti ekor tikus.
Mouse pertama kali dibuat pada tahun 1963 oleh Douglas Engelbart berbahan kayu dengan satu tombol. Model kedua sudah dilengkapi dengan 3 tombol. Pada tahun 1970, Douglas Engelbart memperkenalkan mouse yang dapat mengetahui posisi X-Y pada layar komputer, mouse ini dikenal dengan nama X-Y Position Indicator (indikator posisi X-Y).
Bentuk mouse yang paling umum mempunyai dua tombol, masing-masing di sebelah kiri atas dan kanan atas yang dapat ditekan. Walaupun demikian, komputer-komputer berbasis Macintosh biasanya menggunakan mouse satu tombol.
Mouse bekerja dengan menangkap gerakan menggunakan bola yang menyentuh permukaan keras dan rata. Mouse yang lebih modern sudah tidak menggunakan bola lagi, tetapi menggunakan sinar optikal untuk mendeteksi gerakan. Selain itu, ada pula yang sudah menggunakan teknologi nirkabel, baik yang berbasis radio, sinar inframerah, maupun bluetooth.
Saat ini, teknologi terbaru sudah memungkinkan tetikus memakai sistem laser sehingga resolusinya dapat mencapai 2.000 titik per inci (dpi), bahkan ada yang bisa mencapai 4.800 titik per inci. Biasanya tetikus model ini diperuntukkan bagi penggemar permainan video.
3.1.3 Printer
Printer atau pencetak adalah alat yang menampilkan data dalam bentuk cetakan, baik berupa teks maupun gambar/grafik, di atas kertas. Printer biasanya terbagi atas beberapa bagian, yaitu picker sebagai alat mengambil kertas dari tray. Tray ialah tempat menaruh kertas. Tinta atau toner adalah alat pencetak sesungguhnya, karena ada sesuatu yang disebut tinta atau toner yang digunakan untuk menulis pada kertas. Perbedaan toner dan tinta ialah perbedaan sistem; toner atau laser butuh pemanasan, sedangkan tinta atau inkjet tak butuh pemanasan, hanya pembersihan atau cleaning pada print-head printer tersebut.
Ada pula kabel fleksibel untuk pengiriman sinyal dari prosesor printer ke tinta atau toner. Kabel ini tipis dan fleksibel, namun kuat. Pada bagian belakang printer biasanya ada port paralel atau USB untuk penghubung ke komputer.
Pencetak modem merupakan alat canggih. Perkakasan elektronik yang terdapat dalam sebuah pencetak sama dengan perkakasan elektronik yang terdapat dalam komputer itu sendiri. Pencetak mempunyai 6 jenis yaitu jenis Dot-Matrix, jenis Daisy Wheel, jenis Ink-Jet / jenis Bubble Jet, jenis Chain, jenis Drum dan jenis Laser.
3.1.4 Scaner
Pemindai atau scanner merupakan suatu alat yang digunakan untuk memindai suatu bentuk maupun sifat benda, seperti dokumen, foto, gelombang, suhu dan lain-lain. Hasil pemindaian itu pada umumnya akan ditransformasikan ke dalam komputer sebagai data digital. Terdapat beberapa jenis pemindai bergantung pada kegunaan dan cara kerjanya, antara lain:
- pemindai gambar
- pemindai barcode
- pemindai sinar-X
- pemindai cek
- pemindai logam
- pemindai Optical Mark Reader (OMR)
Di antara jenis-jenis pemindai tersebut, pemindai gambar adalah yang paling sering disebut sebagai pemindai.
Seperti halnya pada pemindai OMR, pemindai gambar juga dapat digunakan sebagai pemindai Lembar Jawaban Komputer (LJK). Agar hal tersebut dapat tercapai, dibutuhkan perangkat lunak dengan teknologi Digital Mark Reader (DMR).
Bila dikelompokkan berdasarkan cara memasukkan kertas, pemindai gambar terdiri atas 2 jenis, yaitu:
1. Flatbed
Pada pemindai gambar Flatbed, kertas diletakkan di atas kaca pemindai, kemudian lampu dan sensor pemindai akan bergerak menyusuri kertas tersebut untuk memperoleh gambarnya.
2. Automatic Document Feeder (ADF)
Pada pemindai gambar Automatic Document Feeder (ADF), kertas diletakkan pada baki/tray, lalu satu per satu kertas akan dimasukkan oleh bagian mekanik pemindai dengan adanya pad assy dan roller. Pada saat kertas bergerak di atas lampu pemindai, sensor pemindai bekerja untuk memperoleh gambar yang merepresentasikan kertas tersebut. Keunggulan pemindai Automatic Document Feeder (ADF) adalah:
- kecepatannya tinggi, dapat mencapai > 10.000 lembar per jam
- dapat membaca dua sisi kertas sekaligus pada saat yang bersamaan
- dengan imprinter, pemindai dapat memberikan tanda pada lembaran yang telah dipindai
- sangat tepat dipasangkan dengan perangkat lunak berteknologi Digital Mark Reader serta untuk - pengarsipan dan manajemen dokumen
Bab IV
Storage
Penyimpanan data komputer, berasal dari bahasa Inggris "computer data storage" sering disebut sebagai memori komputer, merujuk kepada komponen komputer, perangkat komputer, dan media perekaman yang mempertahankan data digital yang digunakan untuk beberapa interval waktu. Penyimpanan data komputer menyediakan salah satu tiga fungsi inti dari komputer modern, yakni mempertahankan informasi. Ia merupakan salah satu komponen fundamental yang terdapat di dalam semua komputer modern, dan memiliki keterkaitan dengan mikroprosesor, dan menjadi model komputer yang digunakan semenjak 1940-an.
Dalam penggunaan kontemporer, memori komputer merujuk kepada bentuk media penyimpanan berbahan semikonduktor, yang dikenal dengan sebutan Random Access Memory (RAM), dan kadang-kadang dalam bentuk lainnya yang lebih cepat tapi hanya dapat menyimpan data secara sementara. Akan tetapi, istilah "computer storage" sekarang secara umum merujuk kepada media penyimpanan massal, yang bisa berupa cakram optis, beberapa bentuk media penyimpanan magnetis (seperti halnya hard disk) dan tipe-tipe media penyimpanan lainnya yang lebih lambat ketimbang RAM, tapi memiliki sifat lebih permanen, seperti flash memory.
RAM
Memori akses acak (bahasa Inggris: Random access memory, RAM) adalah sebuah tipe penyimpanan komputer yang isinya dapat diakses dalam waktu yang tetap tidak memperdulikan letak data tersebut dalam memori. Ini berlawanan dengan alat memori urut, seperti tape magnetik, disk dan drum, di mana gerakan mekanikal dari media penyimpanan memaksa komputer untuk mengakses data secara berurutan.
Pertama kali dikenal pada tahun 60'an. Hanya saja saat itu memori semikonduktor belumlah populer karena harganya yang sangat mahal. Saat itu lebih lazim untuk menggunakan memori utama magnetic.
Perusahaan semikonduktor seperti Intel memulai debutnya dengan memproduksi RAM , lebih tepatnya jenis DRAM.
Biasanya RAM dapat ditulis dan dibaca, berlawanan dengan memori-baca-saja (read-only-memory, ROM), RAM biasanya digunakan untuk penyimpanan primer (memori utama) dalam komputer untuk digunakan dan mengubah informasi secara aktif, meskipun beberapa alat menggunakan beberapa jenis RAM untuk menyediakan penyimpanan sekunder jangka-panjang.
Tetapi ada juga yang berpendapat bahwa ROM merupakan jenis lain dari RAM, karena sifatnya yang sebenarnya juga Random Access seperti halnya SRAM ataupun DRAM. Hanya saja memang proses penulisan pada ROM membutuhkan proses khusus yang tidak semudah dan fleksibel seperti halnya pada SRAM atau DRAM. Selain itu beberapa bagian dari space addres RAM ( memori utama ) dari sebuah sistem yang dipetakan kedalam satu atau dua chip ROM.
Hard disk
Hard disk adalah sebuah komponen perangkat keras yang menyimpan data sekunder dan berisi piringan magnetis. Cakram keras diciptakan pertama kali oleh insinyur IBM, Reynold Johnson di tahun 1956. Cakram keras pertama tersebut terdiri dari 50 piringan berukuran 2 kaki (0,6 meter) dengan kecepatan rotasinya mencapai 1.200 rpm (rotation per minute) dengan kapasitas penyimpanan 4,4 MB. Cakram keras zaman sekarang sudah ada yang hanya selebar 0,6 cm dengan kapasitas 750 GB.
Jika dibuka, terlihat mata cakram keras pada ujung lengan bertuas yang menempel pada piringan yang dapat berputar
Data yang disimpan dalam cakram keras tidak akan hilang ketika tidak diberi tegangan listrik. Dalam sebuah cakram keras, biasanya terdapat lebih dari satu piringan untuk memperbesar kapasitas data yang dapat ditampung.
Dalam perkembangannya kini cakram keras secara fisik menjadi semakin tipis dan kecil namun memiliki daya tampung data yang sangat besar. Cakram keras kini juga tidak hanya dapat terpasang di dalam perangkat (internal) tetapi juga dapat dipasang di luar perangkat (eksternal) dengan menggunakan kabel USB ataupun FireWire.
USB flash drive
USB flash drive adalah alat penyimpanan data memori flash tipe NAND yang memiliki alat penghubung USB yang terintegrasi. Flash drive ini biasanya berukuran kecil, ringan, serta bisa dibaca dan ditulisi dengan mudah. Per November 2006, kapasitas yang tersedia untuk USB flash drive ada dari 128 megabyte sampai 64 gigabyte.
USB flash drive memiliki banyak kelebihan dibandingkan alat penyimpanan data lainnya, khususnya disket atau cakram padat. Alat ini lebih cepat, kecil, dengan kapasitas lebih besar, serta lebih dapat diandalkan (karena tidak memiliki bagian yang bergerak) daripada disket.
Disket
Disket (bahasa Inggris: floppy disk) adalah sebuah perangkat penyimpanan data yang terdiri dari sebuah medium penyimpanan magnetis bulat yang tipis dan lentur dan dilapisi lapisan plastik berbentuk persegi atau persegi panjang.
Cakram liuk "dibaca" dan "ditulis" menggunakan kandar cakram liuk (floppy disk drive, FDD). Kapasitas cakram liuk yang paling umum adalah 1,44 MB (seperti yang tertera pada cakram liuk), meski kapasitas sebenarnya adalah sekitar 1,38 MB.
Bab V
Memori
Memori adalah istilah generik bagi tempat penyimpanan data dalam komputer. Beberapa jenis memori yang banyak digunakan adalah sebagai berikut:
- Register prosesor
- RAM atau Random Access Memory
- Cache Memory (SRAM) (Static RAM)
- Memori fisik (DRAM) (Dynamic RAM)
- Perangkat penyimpanan berbasis disk magnetis
- Perangkat penyimpanan berbasis disk optik
- Memori yang hanya dapat dibaca atau ROM (Read Only Memory)
- Flash Memory
- Punched Card (kuno)
- CD atau Compact Disk
- DVD
Dalam pembicaraan mengenai arsitektur komputer seperti arsitektur von Neumann, misalnya, kapasitas dan kecepatan memori dibedakan dengan menggunakan hierarki memori. Hierarki ini disusun dari jenis memori yang paling cepat hingga yang paling lambat; disusun dari yang paling kecil kapasitasnya hingga paling besar kapasitasnya; dan diurutkan dari harga tiap bit memori-nya mulai dari yang paling tinggi (mahal) hingga yang paling rendah (murah).
Register prosesor
Register prosesor dalam arsitektur komputer, adalah sejumlah kecil memori komputer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
Register prosesor berdiri pada tingkat tertinggi dalam hierarki memori: ini berarti bahwa kecepatannya adalah yang paling cepat; kapasitasnya adalah paling kecil; dan harga tiap bitnya adalah paling tinggi. Register juga digunakan sebagai cara yang paling cepat dalam sistem komputer untuk melakukan manipulasi data. Register umumnya diukur dengan satuan bit yang dapat ditampung olehnya, seperti "register 8-bit", "register 16-bit", "register 32-bit", atau "register 64-bit" dan lain-lain.
Istilah register saat ini dapat merujuk kepada kumpulan register yang dapat diindeks secara langsung untuk melakukan input/output terhadap sebuah instruksi yang didefinisikan oleh set instruksi. untuk istilah ini, digunakanlah kata "Register Arsitektur". Sebagai contoh set instruksi Intel x86 mendefinisikan sekumpulan delapan buah register dengan ukuran 32-bit, tapi CPU yang mengimplementasikan set instruksi x86 dapat mengandung lebih dari delapan register 32-bit.
Jenis register
Register terbagi menjadi beberapa kelas:
Register data, yang digunakan untuk menyimpan angka-angka dalam bilangan bulat (integer).
Register alamat, yang digunakan untuk menyimpan alamat-alamat memori dan juga untuk mengakses memori.
Register general purpose, yang dapat digunakan untuk menyimpan angka dan alamat secara sekaligus.
Register floating-point, yang digunakan untuk menyimpan angka-angka bilangan titik mengambang (floating-point).
Register konstanta (constant register), yang digunakan untuk menyimpan angka-angka tetap yang hanya dapat dibaca (bersifat read-only), semacam phi, null, true, false dan lainnya.
Register vektor, yang digunakan untuk menyimpan hasil pemrosesan vektor yang dilakukan oleh prosesor SIMD.
Register special purpose yang dapat digunakan untuk menyimpan data internal prosesor, seperti halnya instruction pointer, stack pointer, dan status register.
Register yang spesifik terhadap model mesin (machine-specific register), dalam beberapa arsitektur tertentu, digunakan untuk menyimpan data atau pengaturan yang berkaitan dengan prosesor itu sendiri. Karena arti dari setiap register langsung dimasukkan ke dalam desain prosesor tertentu saja, mungkin register jenis ini tidak menjadi standar antara generasi prosesor.
Ukuran register
Register | Prosesor |
4-bit | Intel 4004 |
8-bit | Intel 8080 |
16-bit | Intel 8086, Intel 8088, Intel 80286 |
32-bit | Intel 80386, Intel 80486, Intel Pentium Pro, Intel Pentium, Intel Pentium 2, Intel Pentium 3, Intel Pentium 4, Intel Celeron, Intel Xeon, AMD K5, AMD K6, AMD Athlon, AMD Athlon MP, AMD Athlon XP, AMD Athlon 4, AMD Duron, AMD Sempron |
64-bit | Intel Itanium, Intel Itanium 2, Intel Xeon, Intel Core, Intel Core 2, AMD Athlon 64, AMD Athlon X2, AMD Athlon FX, AMD Turion 64, AMD Turion X2, AMD Sempron |
RAM
Memori akses acak (bahasa Inggris: Random access memory, RAM) adalah sebuah tipe penyimpanan komputer yang isinya dapat diakses dalam waktu yang tetap tidak memperdulikan letak data tersebut dalam memori. Ini berlawanan dengan alat memori urut, seperti tape magnetik, disk dan drum, di mana gerakan mekanikal dari media penyimpanan memaksa komputer untuk mengakses data secara berurutan.
Pertama kali dikenal pada tahun 60'an. Hanya saja saat itu memori semikonduktor belumlah populer karena harganya yang sangat mahal. Saat itu lebih lazim untuk menggunakan memori utama magnetic.
Perusahaan semikonduktor seperti Intel memulai debutnya dengan memproduksi RAM , lebih tepatnya jenis DRAM.
Biasanya RAM dapat ditulis dan dibaca, berlawanan dengan memori-baca-saja (read-only-memory, ROM), RAM biasanya digunakan untuk penyimpanan primer (memori utama) dalam komputer untuk digunakan dan mengubah informasi secara aktif, meskipun beberapa alat menggunakan beberapa jenis RAM untuk menyediakan penyimpanan sekunder jangka-panjang.
Tetapi ada juga yang berpendapat bahwa ROM merupakan jenis lain dari RAM, karena sifatnya yang sebenarnya juga Random Access seperti halnya SRAM ataupun DRAM. Hanya saja memang proses penulisan pada ROM membutuhkan proses khusus yang tidak semudah dan fleksibel seperti halnya pada SRAM atau DRAM. Selain itu beberapa bagian dari space addres RAM ( memori utama ) dari sebuah sistem yang dipetakan kedalam satu atau dua chip ROM.
Tipe umum RAM
- SRAM atau Static RAM
- NV-RAM atau Non-Volatile RAM
- DRAM atau Dynamic RAM
- Fast Page Mode DRAM
- EDO RAM atau Extended Data Out DRAM
- XDR DRAM
- SDRAM atau Synchronous DRAM
- DDR SDRAM atau Double Data Rate Synchronous DRAM sekarang (2005)
mulai digantikan dengan DDR2
- RDRAM atau Rambus DRAM
Tipe tidak umum RAM
- Dual-ported RAM
- Video RAM, memori port-ganda dengan satu port akses acak dan satu port akses urut. Dia menjadi populer karena semakin banyak orang membutuhkan memori video. Lihat penjelasan dalam Dynamic RAM.
- WRAM
- MRAM
- FeRAM
Produsen peringkat atas RAM
- Infineon
- Hynix
- Samsung
- Micron
- Rambus
- Corsair
ROM
Read-only Memory (ROM) adalah istilah bahasa Inggris untuk medium penyimpanan data pada komputer. ROM adalah singkatan dari Read-Only Memory, ROM ini adalah salah satu memori yang ada dalam computer. ROM ini sifatnya permanen, artinya program / data yang disimpan didalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan.
Menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Biasanya program / data yang ada dalam ROM ini diisi oleh pabrik yang membuatnya. Oleh karena sifat ini, ROM biasa digunakan untuk menyimpan firmware (piranti lunak yang berhubungan erat dengan piranti keras).
Salah satu contoh ROM adalah ROM BIOS yang berisi program dasar system komputer yang mengatur / menyiapkan semua peralatan / komponen yang ada dalam komputer saat komputer dihidupkan.
ROM modern didapati dalam bentuk IC, persis seperti medium penyimpanan/memori lainnya seperti RAM. Untuk membedakannya perlu membaca teks yang tertera pada IC-nya. Biasanya dimulai dengan nomer 27xxx, angka 27 menunjukkan jenis ROM , xxx menunjukkan kapasitas dalam kilo bit ( bukan kilo byte ).
Mask ROM
Data pada ROM dimasukkan langsung melalui mask pada saat perakitan chip. Hal ini membuatnya sangat ekonomis terutama jika kita memproduksi dalam jumlah banyak. Namun hal ini juga menjadi sangat mahal karena tidak fleksibel. Sebuah perubahan walaupun hanya satu bit membutuhkan mask baru yang tentu saja tidak murah. Karena tidak fleksibel maka jarang ada yang menggunakannya lagi.
Aplikasi lain yang mirip dengan ROM adalah CD-ROM prerecorded yang familiar dengan kita, salah satunya CD musik. Berbeda dengan pendapat banyak orang bahwa CD-ROM ditulis dengan laser, kenyataannya data pada CD-ROM lebih tepatnya dicetak pada piringan plastik.
Jenis-jenis ROM
- Mask ROM
- PROM
- EPROM
- EAROM
- EEPROM
- Flash Memory
No comments:
Post a Comment